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Quasipatterns in second-harmonic generation
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A cascade of two-dimensional quasipatterns is predicted in intracavity optical frequency doubling due to a
polarization instability at the fundamental frequency. Amplitude equations derived from a microscopic model
of the frequency conversion process show that quasiperiodic structures of arbitrary orientational order can be
spontaneously selected due to bulk nonlinear effects when detuned operation for both fundamental and second-
harmonic fields occurs. Multistability and coexistence of patterns and quasipatterns is also discussed.
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PACS number~s!: 05.45.2a, 47.54.1r
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The study of two-dimensional spatial structures with qu
sicrystalline order in spatially extended pattern forming s
tems@1,2# has received an increasing interest in recent ye
especially since the first experimental observations of qu
periodic patterns in hydrodynamic@3# and nonlinear optica
@4# systems. Quasipatterns of different orientational ord
have been observed in Faraday wave experiments@3,5# and
corroborated by theoretical models@2,6#. In the optical con-
text, quasipatterns have been predicted and experimen
observed inx (3) ~cubic! nonlinear systems, including liquid
crystal light valve devices with imposed feedback rotat
@4# and single-mirror feedback devices with continuous ro
tional symmetry@7–9#. Regardless of the specific physic
system, it was pointed out@2,6,8,9# that stability of quasipat-
terns in isotropic systems with a continuous rotational sy
metry requires the existence of a complicated nonlin
mode coupling acting on a single band of active modes
differently, the existence of triadic resonances among mo
belonging to two different bands of active modes@2#. In most
boundary-free hydrodynamic and optical systems, the b
nonlinearity is usually rather simple and interband re
nances are essential for the observation of quasipatt
@2,9#. Although in real systems boundary effects can infl
ence the bulk nonlinearity, making possible the existence
quasiperiodic structures involving a single band of act
modes@2,5,6#, so far no examples of complex pattern form
tion, which do not require interband resonances nor bou
ary constraints, have been reported. In a recent work@8#,
Leducet al. showed that, in a single-feedback-mirror optic
device, the bulk nonlinearity can support quasipatterns
eightfold orientational order, but the relatively simple mo
coupling function does not allow for the appearance of q
sipatterns with higher orientational orders.

The aim of this Rapid Communication is to show th
spontaneous formation of quasipatterns ofarbitrary orienta-
tional orders is possible in a nonlinear optical process invo
ing a quadraticnonlinearity, namely nondegenerate secon
harmonic generation ~SHG! in an optical cavity.
Furthermore, it is shown that multistability and coexisten
of patterns and quasipatterns of different symmetries is p
sible in this nonlinear optical system.

The starting point of the analysis is provided by the me
field model for type-II second-harmonic generation in
plane-plane optical cavity containing a nonlinearx (2) crystal,
PRE 591063-651X/99/59~1!/24~4!/$15.00
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externally driven by a linearly polarized plane-wave fund
mental field@10,11#. For a symmetric pumping configuratio
@10#, the dynamical equations for the normalized seco
harmonic field envelopeA0 at frequency 2v and for the two
orthogonally polarized fundamental-frequency field env
lopesA1 ,A2 at frequencyv read@10#

] tA05g0@2~11 iD0!A01 ia0¹2A0#2g0A1A2 ,

] tA15g@2~11 iD!A11 ia¹2A1#1gA0A2* 1gE, ~1!

] tA25g@2~11 iD!A21 ia¹2A2#1gA0A1* 1gE,

where E is proportional to the amplitude of the inciden
plane-wave pump field at frequencyv, linearly polarized at
45° with respect to the crystal axes,g0 andg are the cavity
decay rates for the second-harmonic and the fundame
frequency fields, respectively,a0 , a, andD0 , D are the dif-
fraction (ga;2g0a0) and the cavity detuning parameters f
the two fields, respectively, and¹25]x

21]y
2 is the transverse

Laplacian. In writing Eqs.~1!, we assumed same cavity de
tuning parameters and same cavity losses for the two
thogonally polarized fundamental fields. Equations~1! have
the homogeneous symmetric solution given byA15A2

5AX exp(if), A052X exp(2if)/(11iD0), whereX.0 is a
solution of the cubic equation@(11X2D0D)21(D0

1D)2#X5(11D0
2)uEu2. This solution corresponds to an in

tracavity fundamental-frequency field that has the same
larization state as that of the external driving field. As t
amplitudeE of the external driving field is increased, lose
stability occurs due to the appearance of a symme
breaking polarization instability at the fundamental
frequency@10–12#. For a negative detuningD of the funda-
mental field, the wave numbersk of the most unstable
perturbations lie on the critical circle of radiuskc

5A2D/a, and the instability threshold is reached foruEu
5Ec , where Ec

25(21D2)(11D0
2)1/212(12D0D). Al-

though in the linear stage of the instability all the neut
modes are equally amplified, due to their nonlinear comp
tion few of them typically survive and saturate, leading to t
formation of regular patterns. The mode competition can
studied by the derivation of amplitude equations in
multiple-scale asymptotic analysis of the field equations~1!
near the instability point@13#. This is done by looking for
R24 ©1999 The American Physical Society
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a solution of Eqs.~1! as an asymptotic expansion in a sma
ness parametere, v5v(0)1ev(1)1e2v(2)1¯ , where v
5(A0 ,A1 ,A2)T contains the field variables,v(0) is the homo-
geneous symmetric solution atuEu5Ec , ev(1) is the
bifurcating solution in the linearized problem, ande
5(uEu2Ec)

1/2 provides a measure of the distance far fro
the instability point. The solution atO(e) can be taken as
ev(1)5(0,c,2c)T, wherec is a real function given by an
arbitrary superposition of neutral modes on the critical cir

c5 (
n51

2M

Fnexp~ ikn•x!. ~2!

In Eq. ~2!, Fn is the complex amplitude of thenth mode,
uknu5kc , kn1M52kn , Fn1M5Fn* , andM is the number of
competing modes. The time evolution of the amplitudesFn ,
as obtained from solvability conditions atO(e3) in the
asymptotic expansion, read explicitly@13#

1

g
] tFn5mFn2S (

m51

M

b~qmn!uFmu2DFn ~3!

(n51,2,3,...,M ). In Eq. ~3!,

m52Ec@~41D2!A11D0
214~12D0D!#21~ uEu2Ec!,

qmn is the angle between the wave vectorskm andkn , and
the coupling functionb~q! is given by

b~q!5 H2g~0!1g~p!

2@g~0!1g~q!1g~p1q!#

if q50
otherwise ~4!

where

g~q!5
d212~11A11D0

2!

d214A11D0
21~d0d22A11D0

2!2
, ~5!

and

d~q!52akc
2F124 sin2

q

2 G5DF124 sin2
q

2 G ,
d0~q!5D014a0kc

2sin2
q

2
5D022D

g

g0
sin2

q

2
.

After introduction of the polar decompositionFn
5Rnexp(ifn), from Eqs.~3! it turns out that the phasesfn
are constants~i.e., ] tfn50!, whereas the dynamics for th
real amplitudesRn can be represented in the gradient fo
] tRn52dL/dRn , where the Lyapunov function~or free-
energy! L5L(Rn) is given by@1,2#

L52
1

2
m (

n51

M

Rn
21

1

4 (
m,n51

M

b~qmn!Rn
2Rm

2 . ~6!

The amplitude equations~3! have a class of solutions
involving N pairs of oppositely oriented wave vecto
6k1 ,6k2 ,...,6kN equally spaced on the critical circle an
with equal amplitudesRn5m1/2

„(m50
N21b(mp/N)…21/2 (n

51,2,3,...,N), which correspond to periodic (N<3) or qua-
siperiodic (N.3) patterns with 2N-fold orientational order
e

@1,2#. A linear stability analysis indicates that the 2N-folded
pattern is locally stable provided that@1,13#

(
n50

N21

b~np/N!cosS 2p nl

N D>0 ~7!

for eachl 51,2,...,N21, and

(
n50

N21

bS q1
np

N D> (
n50

N21

bS np

N D ~8!

for any qP(0,p/2N#. Equation~7! represents the stability
criteria with respect tointernal perturbations~i.e., perturba-
tions of modes belonging to the pattern!, whereas Eq.~8!
arises from the stability requirement againstexternalpertur-
bations@1#. The above conditions, together with Eqs.~4! and
~5!, can be used to determine thelocal stability domains in
the parameter space of the various patterns, and the dom
of multistability @14#. In case of multistability, theglobal
stability can be investigated by comparing the values of
Lyapunov function in correspondence of the different valu
of N, LN52m2N/@4(n50

N21b(np/N)#, the relaxational dy-
namics of the system favoring the regular pattern wh
minimizes the free-energy.

In Fig. 1 the domains of local stability for rolls, square
and hexagons as derived from Eqs.~7! and~8! are shown in
the (D0 ,D) plane forg5g0 . As can be seen, the stabilit
domain of hexagonal patterns~shaded area! shares a com-
mon region with the stability domain of square patterns~ly-
ing between curvesa and b!, indicating the possibility of
coexistence between square and hexagonal patterns. A
parison of the free-energy for these two patterns in the bi
bility region indicates that squares correspond to the abso
minimum and hexagons to a local minimum of the fre
energy. Most interesting, in a wide region inside curvea,
roll, square, and hexagonal patterns are unstable, which

FIG. 1. Stability domains of roll, square, and hexagonal patte
in the (D0 ,D) plane forg05g. Curvea marks the stability bound-
ary of rolls, whereas curveb delimits the stability boundary of
squares with respect to external perturbations. Squares are lin
stable in the domain contained between curvesa andb. The dashed
area corresponds to the stability domain of hexagons~Hex!. Note
that there exists bistability between square and hexagonal patt
and that in a region inside the domain delimited by curveb all
periodic patterns are unstable.
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signature of the existence of quasipatterns. Indeed, from
~7! and ~8! we found that quasipatterns with an arbitra
orientational order are stable in certain domains of the
rameter space. As an example, Fig. 2 shows the local st
ity domains of decagonal (N55) and dodecagonal (N56)
quasipatterns in the (D0 ,D) plane. The figure also shows th
possibility of coexistence of these two quasipatterns. In g
eral, multistability involving more than two patterns or qu
sipatterns can be found@14#; as an example, forD5215,
D05230 andg5g0 , it turns out that octagonal, decagona
and dodecagonal quasipatterns are linearly stable, whe
for D5216, D05230, and g5g0 multistability among
hexagons, octagons, and decagons is possible. The sta
properties of patterns and quasipatterns are determined
cally by the shape of the coupling functionb~q!, which rules
the nonlinear interaction among the neutral modes on
critical circle @2#. In particular, a necessary condition for th
stability of quasipatterns is thatb~q! be smaller thanb~0! in
some domain of the interval@0,p#. For the coupling function
given by Eqs.~4! and ~5!, it turns out that, for a positive
value of the second-harmonic detuningD0 or for low values
of the detuning parametersD andD0 , b~q! reaches its mini-
mum value atq50,p, so that the patterns of lowest free
energy are rolls, i.e.,L1<LN for all N ~see also Fig. 1!.
However, when the second-harmonic detuning is negat
the conditionb(0).b(q) can be satisfied in some doma
and higher-order regular patterns can be selected. In par
lar, an inspection of Eqs.~4! and ~5! reveals that the condi
tion b(0).b(q) can be satisfied in a wide domain of th
interval @0,p# wheneverD0;24akc

252gD/g0 and uD0u is
large. As an example, Fig. 3 shows the shape of the norm
ized functionb~q!/b~0! whenD052gD/g0 for some values
of the fundamental-frequency detuningD. As uDu is increased
~with D052Dg/g0!, the region whereb(q),b(0) be-
comes wider and, as a consequence, the minimum of
free-energy,LN , is expected to occur at increasing values
N. This is shown in Fig. 4, where the orderN of the regular
pattern which minimizes the free-energy is plotted as a fu
tion of the fundamental-frequency detuningD for g5g0

FIG. 2. Stability domains~dashed areas! of ~a! decagonal, and
~b! dodecagonal quasipatterns in the (D0 ,D) plane forg05g.
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@Fig. 4~a!# and forg510g0 @Fig. 4~b!#. As it can be seen, a
cascading of patterns with increasing rotational symmetr
predicted for increasing values of detuning parameters.
tice that patterns corresponding to some orientational ord
are missed in Fig. 4, although they have been found to
locally stable and, hence, observable. As an example, in
4~a! quasipatterns corresponding to the ordersN54,6,9,...
are not selected asuDu is increased, although in a wide inte
val of the curveD052D they satisfy the local stability con
ditions @Eqs.~7! and~8!#. This is due to the presence, in th
shape ofb~q!, of two peaked maxima located atq5qm ,
p2qm @where qm is determined by imposing (]b/q)qm

50; see Fig. 3#, which do not favor selection of wave vec
tors oriented along such directions.

It is worth discussing, as a conclusive point, the physi
mechanism underlying the spontaneous appearance of q
patterns in the intracavity frequency conversion proc
when a detuned configuration is used. The polarization in
bility at the fundamental frequency is responsible for t
growth of a set of off-axis modes$k l% on a critical circle at
the expense of the second-harmonic field already establis
in the cavity. This instability can be viewed, in fact, as
parametric oscillation process for a polarization compon
at the fundamental frequency which draws its energy fr
the second-harmonic field@10#. The linearly growing modes
can be frequency up-converted again in the nonlinear crys
and saturation of the linear growth occurs. In particular,
frequency up-conversion process will generate all poss
spatial componentss5k l1kn at frequency 2v. As this pro-
cess tends to limit the growth of linearly unstable modes,
instability will favor the growth of mode combinations fo
which the up-conversion process is less efficient. The
conversion efficiency is strongly dependent on the cav

FIG. 3. Behavior of the normalized coupling functionb~q!/b~0!
in the interval@0,p/2# for g5g0 , D052D and for different values
of the detuningD: a: D524; b: D5216; c: D5225. Note that
b~q! is discontinuous atq50 with b(q→0)52b(0).

FIG. 4. OrderN of the regular pattern which minimizes th
free-energy as a function of the detuning parameterD for ~a! g
5g0 and~b! g510g0 . The detuning for the second-harmonic fie
is D052D in ~a! andD055D in ~b!.
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phase matching termDf5D01a0usu2, the conversion effi-
ciency being maximized at perfect phase-matching (Df
50). If we now consider the case of a large~and negative!
second-harmonic cavity detuningD0 , the up-conversion pro
cess is generally less efficient; however, if the fundamen
frequency cavity detuningD is large too and close toD
;g0D0/2g, the phase matchingDf vanishes whenusu
;2kc , i.e., the up-conversion process becomes very effic
for self-interaction terms~i.e., whenkn5k l!. This phenom-
enon is reflected in the shape of the nonlinear coupling fu
tion b~q!, which is large nearq;0 ~see Fig. 3!, and ex-
plains the tendency of the polarization instability to fav
structures with an increasing rotational symmetry. It sho
be pointed out that the values of the detunings needed fo
i,
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observation of quasipatterns of high orientational orders
quite large, and in this case a more complete model, wh
takes into account longitudinal field variations, should
used. For the same reason, numerical simulations aime
observe quasipatterns are not trivial in such regions of
parameter space.

In conclusion, a theoretical analysis of complex patte
formation for a mean-field model of intracavity optical fre
quency doubling has been presented. This analysis prov
a remarkable example in nonlinear optics of spontaneous
mation of quasipatterns with an arbitrary orientational ord
and of coexistence of patterns with different symmetries.

The author wishes to thank Dr. D. Michaelis for shari
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