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Quasipatterns in second-harmonic generation
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A cascade of two-dimensional quasipatterns is predicted in intracavity optical frequency doubling due to a
polarization instability at the fundamental frequency. Amplitude equations derived from a microscopic model
of the frequency conversion process show that quasiperiodic structures of arbitrary orientational order can be
spontaneously selected due to bulk nonlinear effects when detuned operation for both fundamental and second-
harmonic fields occurs. Multistability and coexistence of patterns and quasipatterns is also discussed.
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The study of two-dimensional spatial structures with qua-externally driven by a linearly polarized plane-wave funda-
sicrystalline order in spatially extended pattern forming sys+mental field[10,11. For a symmetric pumping configuration
tems[1,2] has received an increasing interest in recent yearg10], the dynamical equations for the normalized second-
especially since the first experimental observations of quasharmonic field envelopd, at frequency @ and for the two
periodic patterns in hydrodynami8] and nonlinear optical orthogonally polarized fundamental-frequency field enve-
[4] systems. Quasipatterns of different orientational orderdopesA;,A; at frequencyw read[10]
have been observed in Faraday wave experimehf and ) ] )
corroborated by theoretical modé3,6]. In the optical con- 9tA0= Yol —(1+140)Ag+iagV Aol — voA1A2,
text, quasipatterns have been predicted and experimentally
observed iny®® (cubic) nonlinear systems, including liquid-
crystal light valve devices with imposed feedback rotation _ I .
[4] and single-mirror feedback devices with continuous rota-  9tA2= YL —(1+iA)A+iaV Az ]+ yAoAL + ¥E,
tional symmetry[7-9]. Regardless of the specific physical
system, it was pointed oy?,6,8,9 that stability of quasipat- plane-wave pump field at frequenay linearly polarized at

terns in isotropic systems with a continuous rotational sym450 ith t 10 th tal d th i
metry requires the existence of a complicated nonlinear with respect 1o the crystal axeg, andy aré the cavity

mode coupling acting on a single band of active modes c)rdecay rates for the second-harmonic and the fundamental

differently, the existence of triadic resonances among mode1l equency fields, respectivelg, a, andAo_, A are the dif-
raction (ya~2vyqag) and the cavity detuning parameters for

belonging to two different bands of active mod&$ In most , . A= 2t o2
boundary-free hydrodynamic and optical systems, the bulfh€ two fields, respectively, arid” = d;+ dy is the transverse

nonlinearity is usually rather simple and interband resol-@pPlacian. In writing Egs(1), we assumed same cavity de-
nances are essential for the observation of quasipatterfdning parameters and same cavity losses for the two or-
[2,9]. Although in real systems boundary effects can influ-thogonally polarized fundamental fields. Equati¢hshave
ence the bulk nonlinearity, making possible the existence of’®_homogeneous symmetric solution given By=A,
quasiperiodic structures involving a single band of active= \/XeXpw), Ao=—Xexp(d¢)/(1+iAg), whereX>0 is a
modes2,5,6), so far no examples of complex pattern forma-solution of the cubic equation(1+X—AgA)?+(4Aq
tion, which do not require interband resonances nor bound* A)?]X=(1+A%)|E|%. This solution corresponds to an in-
ary constraints, have been reported. In a recent Wik tracavity fundamental-frequency field that has the same po-
Leducet al. showed that, in a single-feedback-mirror optical larization state as that of the external driving field. As the
device, the bulk nonlinearity can support quasipatterns ofimplitudeE of the external driving field is increased, lose of
eightfold orientational order, but the relatively simple modestability occurs due to the appearance of a symmetry-
coupling function does not allow for the appearance of quabreaking polarization instability at the fundamental-
sipatterns with higher orientational orders. frequency{10-12. For a negative detuning of the funda-
The aim of this Rapid Communication is to show that mental field, the wave numbers of the most unstable
spontaneous formation of quasipatternsadiitrary orienta- ~ perturbations lie on the critical circle of radiug,
tional orders is possible in a nonlinear optical process involv=y—A/a, and the instability threshold is reached fd|
ing a quadratic nonlinearity, namely nondegenerate second=E., where EZ=(2+A2%)(1+A2)Y2+2(1-AyA). Al-
harmonic generation (SHG) in an optical cavity. though in the linear stage of the instability all the neutral
Furthermore, it is shown that multistability and coexistencemodes are equally amplified, due to their nonlinear competi-
of patterns and quasipatterns of different symmetries is pogion few of them typically survive and saturate, leading to the
sible in this nonlinear optical system. formation of regular patterns. The mode competition can be
The starting point of the analysis is provided by the meanstudied by the derivation of amplitude equations in a
field model for type-ll second-harmonic generation in amultiple-scale asymptotic analysis of the field equati@h)s
plane-plane optical cavity containing a nonlingé®) crystal, near the instability poinf13]. This is done by looking for

A=y —(1+iA)A +iaV2A ]+ yAAS +yE, (D)

where E is proportional to the amplitude of the incident
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a solution of Egs(1) as an asymptotic expansion in a small-
ness parameters, v=v(9+ev)+ 2y +---  where v
=(Ag,A;,A,)T contains the field variables(® is the homo-
geneous symmetric solution dE|=E., ev(? is the
bifurcating solution in the linearized problem, ane
=(|E|—E¢)Y? provides a measure of the distance far from
the instability point. The solution &(e) can be taken as
eviV=(0,4,— 47, wherey is a real function given by an
arbitrary superposition of neutral modes on the critical circle

0

—_
o

2M

Y= 21 Frexp(iky-X). (2 '2(_)

Fundamental Detuning A

In Eq. (2), F, is the complex amplitude of theth mode,
[Knl =Ke» Knsm=—Kn, Fnem=F*, andM is the number of
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Second-Harmonic Detuning A,

competing modes. The time evolution of the amplitubies FIG. 1. Stability domains of roll, square, and hexagonal patterns

as obtained from solvability conditions #&(e®) in the
asymptotic expansion, read explicifl{3]

in the (Ag,A) plane foryy,=vy. Curvea marks the stability bound-
ary of rolls, whereas curvé delimits the stability boundary of
squares with respect to external perturbations. Squares are linearly

3 area corresponds to the stability domain of hexagéiex). Note

M ) stable in the domain contained between cuwesdb. The dashed
Fn

1
_&tFn:MFn_( 2 B(ﬁmn)||:m|2
Y m=1

that there exists bistability between square and hexagonal patterns,

and that in a region inside the domain delimited by cubvall

(n=1,2,3,.M). In Eq. (3), periodic patterns are unstable.
— 2y |/ 2 -1
p=2E(4+ A% VI+AGHA(1-A0A) ] H(|E[-Eo), [1,2]. A linear stability analysis indicates that thé&lZolded
Jmn IS the angle between the wave vect&gsandk,,, and pattern is locally stable provided thet, 13
the coupling function3(9) is given by N-1
> B(nm/N)co 2m nl =0 )
29(0)+g() if 9=0 PN N |~

B =) 2[(0)+ g(9) +g(m+0)] otherwise ¥
for eachl=1,2,...N—1, and

where
"t nr\ "&b (nw
) FP+2(1+1+4) - 2 Bl ot ]= 2 B(W) ®
= n= n=
g 2+ A1+ A2+ (5,0—2\1+A%)?’
for any 9 € (0,7/2N]. Equation(7) represents the stability
and criteria with respect tanternal perturbationgii.e., perturba-
5 5 tions of modes belonging to the pattgravhereas Eq(8)
S(9)=—ak?1-4 sir?—} :A[ 1—4 sir?—}, arises from the stability requirement agaiesternalpertur-
2 2 bations[1]. The above conditions, together with E¢4). and
s s (5), can be used to determine thaeal stability domains in
_ 2¢i2 Y A _oa Y 2V the parameter space of the various patterns, and the domains
5o(19) = Ao+ Aackcsin' 5 =Ao— 24 yOS'”Zz ' of multistability [14]. In case of multistability, theglobal

) ) N stability can be investigated by comparing the values of the
After introduction of the polar decompositionF,  [yapunov function in correspondence of the different values
=Rnexp(¢n), from Egs.(3) it turns out that the phases,  of N, Ly=— u?N/[4=N_2B(n7/N)], the relaxational dy-

are constantsi.e., d;¢,=0), whereas the dynamics for the namics of the system favoring the regular pattern which

real amplitudesR, can be represented in the gradient formpyinimizes the free-energy.

9Ry=—6L/6R,, where the Lyapunov functiofior free- In Fig. 1 the domains of local stability for rolls, squares,
energy L=L(R,) is given by[1,2] and hexagons as derived from E¢8). and (8) are shown in
LM LM the (Ay,A) plane fory=1vy,. As can be seen, the stability
_ 2 2p2 domain of hexagonal patterrishaded argashares a com-
=—_ +— . _ / " .
L 2 ’U“Zl Ry 4m,;:1 A(Imn)RRin © mon region with the stability domain of square pattefiys

ing between curvea and b),

indicating the possibility of

The amplitude equationg3) have a class of solutions, coexistence between square and hexagonal patterns. A com-
involving N pairs of oppositely oriented wave vectors parison of the free-energy for these two patterns in the bista-
*ky,*k;,...,xky equally spaced on the critical circle and bility region indicates that squares correspond to the absolute
with equal amplitudesR,=u*4EN"18(m#/N))"¥2 (n minimum and hexagons to a local minimum of the free-
=1,2,3,..N), which correspond to periodidN=3) or qua- energy. Most interesting, in a wide region inside cueje
siperiodic (N\>3) patterns with X-fold orientational order roll, square, and hexagonal patterns are unstable, which is a
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0 T T T . FIG. 3. Behavior of the normalized coupling functig9)/3(0)
3 (b)_ in the interval[0,7/2] for y=,, Ag=2A and for different values

of the detuningA: a: A=—4; b: A=-16; ¢ A=—25. Note that
. B(9) is discontinuous atr=0 with B(9—0)=23(0).

[Fig. 4@] and for y= 10y, [Fig. 4(b)]. As it can be seen, a
cascading of patterns with increasing rotational symmetry is
A0 e a0 40 30 20 10 o predlcted for increasing valugs of detunlng_parameters. No-
Second-Harmonic Detuning A tice that patterns corresponding to some orientational orders
are missed in Fig. 4, although they have been found to be
locally stable and, hence, observable. As an example, in Fig.
4(a) quasipatterns corresponding to the ordkirs 4,6,9,...
are not selected d4| is increased, although in a wide inter-
signature of the existence of quasipatterns. Indeed, from Eqyal of the curveA,=2A they satisfy the local stability con-
(7) and (8) we found that quasipatterns with an arbitrary ditions[Eqgs.(7) and(8)]. This is due to the presence, in the
orientational order are stable in certain domains of the pashape of3(19), of two peaked maxima located &= ¥,,
rameter space. As an example, Fig. 2 shows the local stabitF— 9y, [where &, is determined by impos,ing<9@/«t}),9m
ity domains of decagonalN=>5) and dodecagonaN=6)  =0: see Fig. 3 which do not favor selection of wave vec-
quasipatterns in theX,A) plane. The figure also shows the tors oriented along such directions.
possibility of coexistence of these two quasipatterns. In gen- |t is worth discussing, as a conclusive point, the physical
eral, multistability involving more than two patterns or qua- mechanism underlying the spontaneous appearance of quasi-
sipatterns can be found4]; as an example, foA=—15,  patterns in the intracavity frequency conversion process
Ay=—30 andy=y,, it turns out that octagonal, decagonal, when a detuned configuration is used. The polarization insta-
and dodecagonal quasipatterns are linearly stable, wherepgity at the fundamental frequency is responsible for the
for A=-16, Ap=—30, and y=y, multistability among growth of a set of off-axis model,} on a critical circle at
hexagons, octagons, and decagons is possible. The stabiliiye expense of the second-harmonic field already established
properties of patterns and quasipatterns are determined bagi the cavity. This instability can be viewed, in fact, as a
cally by the shape of the coupling functigitd), which rules  parametric oscillation process for a polarization component
the nonlinear interaction among the neutral modes on that the fundamental frequency which draws its energy from
critical circle[2]. In particular, a necessary condition for the the second-harmonic fie[d0]. The linearly growing modes
stability of quasipatterns is th#(9) be smaller thaB(0) in  can be frequency up-converted again in the nonlinear crystal,
some domain of the interv@D,=]. For the coupling function and saturation of the linear growth occurs. In particular, the
given by Egs.(4) and (5), it turns out that, for a positive frequency up-conversion process will generate all possible
value of the second-harmonic detunig or for low values  spatial components=k,+k,, at frequency @. As this pro-
of the detuning parametefsandA,, B(19) reaches its mini-  cess tends to limit the growth of linearly unstable modes, the
mum value atd9=0,m, so that the patterns of lowest free- instability will favor the growth of mode combinations for
energy are rolls, i.e.L;<Ly for all N (see also Fig. 1  which the up-conversion process is less efficient. The up-
However, when the second-harmonic detuning is negativesonversion efficiency is strongly dependent on the cavity
the conditionB(0)> B(¥) can be satisfied in some domain
and higher-order regular patterns can be selected. In particu- — 22—

Fundamental Detuning A

FIG. 2. Stability domaingdashed areaof (a) decagonal, and
(b) dodecagonal quasipatterns in thiy(A) plane fory,=y.

lar, an inspection of Eqg4) and (5) reveals that the condi- 10— @71 o (b)

tion B(0)> B(¥) can be satisfied in a wide domain of the % 8 —— 1 sf —
interval [0,77] wheneverA,~ —4akZ=2yA/y, and|A,| is 8 or — 1 6f ]
large. As an example, Fig. 3 shows the shape of the normal- 8 4r 1 4t ]
ized functionB(9)/B(0) whenAy=2yA/y, for some values 2r = 2 R
of the fundamental-frequency detuningAs |A| is increased 05 S0 25 0 %5 S0 25 o

(with Ag=2A+v/vy,), the region wheres(9)<p(0) be-
comes wider and, as a consequence, the minimum of the
free-energyl , is expected to occur at increasing values of  FIG. 4. OrderN of the regular pattern which minimizes the
N. This is shown in Fig. 4, where the orddrof the regular  free-energy as a function of the detuning paramétefor (a) y
pattern which minimizes the free-energy is plotted as a func=y, and(b) y=10y,. The detuning for the second-harmonic field
tion of the fundamental-frequency detunidg for y=1vy, is Ag=2A in (a) andAy=5A in (b).

Fundamental-frequency Detuning A
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phase matching term ¢=A,+ag|s?, the conversion effi- observation of quasipatterns of high orientational orders are
ciency being maximized at perfect phase-matchidgs( duite large, and in this case a more complete model, which
—0). If we now consider the case of a largend negative  takes into account longitudinal field variations, should be

second-harmonic cavity detunirg,, the up-conversion pro- used. For the_same reason, nume_ncal S|mulat|0|js aimed to
cess is generally less efficient; however, if the fundamentalQPServe quasipatterns are not trivial in such regions of the

frequency cavity detuning\ is large too and close ta parameter space. : .
q Y y @ 9 In conclusion, a theoretical analysis of complex pattern

:;'EAO(ZY' ;he phase m_atchmg&qb vt?mshes When|?f|. . formation for a mean-field model of intracavity optical fre-

c: I-€., the Up-CONVETSION Process becomes very € 'C'en(ﬂuency doubling has been presented. This analysis provides
for self-interaction termsi.e., whenk,=k)). This phenom- o arkable example in nonlinear optics of spontaneous for-
enon is reflected in the shape of the nonlinear coupling funciaiion of quasipatterns with an arbitrary orientational order

tion B(d), which is large neay~0 (see Fig. 3 and ex-  gnq of coexistence of patterns with different symmetries.
plains the tendency of the polarization instability to favor

structures with an increasing rotational symmetry. It should The author wishes to thank Dr. D. Michaelis for sharing
be pointed out that the values of the detunings needed for theefs.[11] prior to their publication.
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